first commit

This commit is contained in:
Vicente Ferrari Smith 2025-12-21 13:37:28 +01:00
commit aab95dff17
4 changed files with 457 additions and 0 deletions

159
build.zig Normal file
View File

@ -0,0 +1,159 @@
const std = @import("std");
// Although this function looks imperative, it does not perform the build
// directly and instead it mutates the build graph (`b`) that will be then
// executed by an external runner. The functions in `std.Build` implement a DSL
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
pub fn build(b: *std.Build) void {
// Standard target options allow the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// It's also possible to define more custom flags to toggle optional features
// of this build script using `b.option()`. All defined flags (including
// target and optimize options) will be listed when running `zig build --help`
// in this directory.
// This creates a module, which represents a collection of source files alongside
// some compilation options, such as optimization mode and linked system libraries.
// Zig modules are the preferred way of making Zig code available to consumers.
// addModule defines a module that we intend to make available for importing
// to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const mod = b.addModule("zzz", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
.root_source_file = b.path("src/root.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target,
});
// Here we define an executable. An executable needs to have a root module
// which needs to expose a `main` function. While we could add a main function
// to the module defined above, it's sometimes preferable to split business
// logic and the CLI into two separate modules.
//
// If your goal is to create a Zig library for others to use, consider if
// it might benefit from also exposing a CLI tool. A parser library for a
// data serialization format could also bundle a CLI syntax checker, for example.
//
// If instead your goal is to create an executable, consider if users might
// be interested in also being able to embed the core functionality of your
// program in their own executable in order to avoid the overhead involved in
// subprocessing your CLI tool.
//
// If neither case applies to you, feel free to delete the declaration you
// don't need and to put everything under a single module.
const exe = b.addExecutable(.{
.name = "zzz",
.root_module = b.createModule(.{
// b.createModule defines a new module just like b.addModule but,
// unlike b.addModule, it does not expose the module to consumers of
// this package, which is why in this case we don't have to give it a name.
.root_source_file = b.path("src/main.zig"),
// Target and optimization levels must be explicitly wired in when
// defining an executable or library (in the root module), and you
// can also hardcode a specific target for an executable or library
// definition if desireable (e.g. firmware for embedded devices).
.target = target,
.optimize = optimize,
// List of modules available for import in source files part of the
// root module.
.imports = &.{
// Here "zzz" is the name you will use in your source code to
// import this module (e.g. `@import("zzz")`). The name is
// repeated because you are allowed to rename your imports, which
// can be extremely useful in case of collisions (which can happen
// importing modules from different packages).
.{ .name = "zzz", .module = mod },
},
}),
});
const zmath = b.dependency("zmath", .{});
exe.root_module.addImport("zmath", zmath.module("root"));
// This declares intent for the executable to be installed into the
// install prefix when running `zig build` (i.e. when executing the default
// step). By default the install prefix is `zig-out/` but can be overridden
// by passing `--prefix` or `-p`.
b.installArtifact(exe);
// This creates a top level step. Top level steps have a name and can be
// invoked by name when running `zig build` (e.g. `zig build run`).
// This will evaluate the `run` step rather than the default step.
// For a top level step to actually do something, it must depend on other
// steps (e.g. a Run step, as we will see in a moment).
const run_step = b.step("run", "Run the app");
// This creates a RunArtifact step in the build graph. A RunArtifact step
// invokes an executable compiled by Zig. Steps will only be executed by the
// runner if invoked directly by the user (in the case of top level steps)
// or if another step depends on it, so it's up to you to define when and
// how this Run step will be executed. In our case we want to run it when
// the user runs `zig build run`, so we create a dependency link.
const run_cmd = b.addRunArtifact(exe);
run_step.dependOn(&run_cmd.step);
// By making the run step depend on the default step, it will be run from the
// installation directory rather than directly from within the cache directory.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// Creates an executable that will run `test` blocks from the provided module.
// Here `mod` needs to define a target, which is why earlier we made sure to
// set the releative field.
const mod_tests = b.addTest(.{
.root_module = mod,
});
// A run step that will run the test executable.
const run_mod_tests = b.addRunArtifact(mod_tests);
// Creates an executable that will run `test` blocks from the executable's
// root module. Note that test executables only test one module at a time,
// hence why we have to create two separate ones.
const exe_tests = b.addTest(.{
.root_module = exe.root_module,
});
// A run step that will run the second test executable.
const run_exe_tests = b.addRunArtifact(exe_tests);
// A top level step for running all tests. dependOn can be called multiple
// times and since the two run steps do not depend on one another, this will
// make the two of them run in parallel.
const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_mod_tests.step);
test_step.dependOn(&run_exe_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
}

48
build.zig.zon Normal file
View File

@ -0,0 +1,48 @@
.{
// This is the default name used by packages depending on this one. For
// example, when a user runs `zig fetch --save <url>`, this field is used
// as the key in the `dependencies` table. Although the user can choose a
// different name, most users will stick with this provided value.
//
// It is redundant to include "zig" in this name because it is already
// within the Zig package namespace.
.name = .zzz,
// This is a [Semantic Version](https://semver.org/).
// In a future version of Zig it will be used for package deduplication.
.version = "0.0.0",
// Together with name, this represents a globally unique package
// identifier. This field is generated by the Zig toolchain when the
// package is first created, and then *never changes*. This allows
// unambiguous detection of one package being an updated version of
// another.
//
// When forking a Zig project, this id should be regenerated (delete the
// field and run `zig build`) if the upstream project is still maintained.
// Otherwise, the fork is *hostile*, attempting to take control over the
// original project's identity. Thus it is recommended to leave the comment
// on the following line intact, so that it shows up in code reviews that
// modify the field.
.fingerprint = 0xc3273dcabf5a6ceb, // Changing this has security and trust implications.
// Tracks the earliest Zig version that the package considers to be a
// supported use case.
.minimum_zig_version = "0.15.2",
// This field is optional.
// Each dependency must either provide a `url` and `hash`, or a `path`.
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
// Once all dependencies are fetched, `zig build` no longer requires
// internet connectivity.
.dependencies = .{
.zmath = .{
.url = "git+https://github.com/zig-gamedev/zmath.git#3a5955b2b72cd081563fbb084eff05bffd1e3fbb",
.hash = "zmath-0.11.0-dev-wjwivdMsAwD-xaLj76YHUq3t9JDH-X16xuMTmnDzqbu2",
},
},
.paths = .{
"build.zig",
"build.zig.zon",
"src",
// For example...
//"LICENSE",
//"README.md",
},
}

227
src/main.zig Normal file
View File

@ -0,0 +1,227 @@
const std = @import("std");
const zzz = @import("zzz");
const zm = @import("zmath");
const User = struct {
name: []const u8,
age: i64,
valid: bool,
};
fn Storage(comptime T: type) type {
return struct {
items: std.ArrayList(T),
pub fn init(allocator: std.mem.Allocator) !@This() {
return .{
.items = try std.ArrayList(T).initCapacity(allocator, 32),
};
}
pub fn deinit(self: *@This(), allocator: std.mem.Allocator) void {
self.items.deinit(allocator);
}
pub fn update(self: *@This()) void {
for (self.items.items, 0..) |*item, i| {
_ = i;
if (@hasDecl(T, "update"))
item.update();
}
}
};
}
fn spawn(chunk: anytype, comptime T: type, allocator: std.mem.Allocator, value: T) void {
@field(chunk, @typeName(T)).items.append(allocator, value) catch unreachable;
}
const EntityKinds = .{
Player,
Monster,
Projectile,
};
const Player = struct {
pos: zm.Vec,
hp: i32,
pub fn update(self: *Player) void {
std.log.info("pos=({})", .{self.pos});
}
};
const Monster = struct {
pos: zm.Vec,
hp: i32,
pub fn update(self: *Monster) void {
std.log.info("pos=({})", .{self.pos});
}
};
const Projectile = struct {
pos: zm.Vec,
vel: zm.Vec,
pub fn update(self: *Projectile) void {
self.pos = self.pos + self.vel;
std.log.info("pos=({})", .{self.pos});
}
};
fn initChunk(allocator: std.mem.Allocator) !Chunk {
var chunk: Chunk = undefined;
switch (@typeInfo(Chunk)) {
.@"struct" => |s| {
inline for (s.fields) |field| {
const StorageT = field.type;
@field(chunk, field.name) = try StorageT.init(allocator);
}
},
else => unreachable,
}
return chunk;
}
fn deinitChunk(chunk: *Chunk, allocator: std.mem.Allocator) void {
switch (@typeInfo(Chunk)) {
.@"struct" => |s| {
inline for (s.fields) |field| {
@field(chunk, field.name).deinit(allocator);
}
},
else => unreachable,
}
}
fn _Chunk(comptime Types: anytype) type {
const FieldCount = Types.len;
var fields: [FieldCount]std.builtin.Type.StructField = undefined;
inline for (Types, 0..) |T, i| {
fields[i] = .{
.name = @typeName(T),
.type = Storage(T),
.default_value_ptr = null,
.is_comptime = false,
.alignment = @alignOf(Storage(T)),
};
}
return @Type(.{
.@"struct" = .{
.layout = .auto,
.fields = &fields,
.decls = &.{},
.is_tuple = false,
},
});
}
const Chunk = _Chunk(EntityKinds);
fn updateChunk(chunk: *Chunk) void {
const info = @typeInfo(Chunk);
switch (info) {
.@"struct" => |s| {
inline for (s.fields) |field| {
@field(chunk, field.name).update();
}
},
else => unreachable,
}
}
var stdout: *std.io.Writer = undefined;
pub fn main() !void {
var dbg_allocator = std.heap.DebugAllocator(.{}).init;
defer _ = dbg_allocator.deinit();
const allocator = dbg_allocator.allocator();
var stdout_buffer: [1024]u8 = undefined;
var stdout_writer = std.fs.File.stdout().writer(&stdout_buffer);
stdout = &stdout_writer.interface;
//const j: User = .{ .name = "Jenny", .age = 34, .valid = true };
//try std.json.Stringify.value(j, .{}, stdout);
//try stdout.print("{s}", .{@typeName(Chunk)});
std.log.info("{s}", .{@typeName(Chunk)});
try stdout.flush();
const address = try std.net.Address.parseIp4("127.0.0.1", 3000);
var server = try address.listen(.{});
defer server.deinit();
var chunk = try initChunk(allocator);
defer deinitChunk(&chunk, allocator);
spawn(&chunk, Player, allocator, .{
.pos = zm.f32x4(1, 1, 0, 0),
.hp = 10,
});
spawn(&chunk, Monster, allocator, .{
.pos = zm.f32x4(1, 1, 0, 0),
.hp = 20,
});
spawn(&chunk, Projectile, allocator, .{
.pos = zm.f32x4(0, 0, 0, 0),
.vel = zm.f32x4(0.2, 0, 0, 0),
});
updateChunk(&chunk);
// spawn(&chunk, Player, .{ .pos = .{ .x = 0, .y = 0 }, .hp = 10 });
// spawn(&chunk, Monster, .{ .pos = .{ .x = 5, .y = 5 }, .hp = 20 });
// updateChunk(&chunk);
// while (true) {
// const connection = try server.accept();
// defer connection.stream.close();
// var recv_buffer: [4000]u8 = undefined;
// var send_buffer: [4000]u8 = undefined;
// var conn_reader = connection.stream.reader(&recv_buffer);
// var conn_writer = connection.stream.writer(&send_buffer);
// var http_server = std.http.Server.init(conn_reader.interface(), &conn_writer.interface);
// var req = try http_server.receiveHead();
// std.log.info("connection recieved", .{});
// try req.respond("hello!", .{});
// }
}
//fn handle_connection(connection: std.net.Server.Connection) !void {}
// test "simple test" {
// const gpa = std.testing.allocator;
// var list: std.ArrayList(i32) = .empty;
// defer list.deinit(gpa); // Try commenting this out and see if zig detects the memory leak!
// try list.append(gpa, 42);
// try std.testing.expectEqual(@as(i32, 42), list.pop());
// }
// test "fuzz example" {
// const Context = struct {
// fn testOne(context: @This(), input: []const u8) anyerror!void {
// _ = context;
// // Try passing `--fuzz` to `zig build test` and see if it manages to fail this test case!
// try std.testing.expect(!std.mem.eql(u8, "canyoufindme", input));
// }
// };
// try std.testing.fuzz(Context{}, Context.testOne, .{});
// }

23
src/root.zig Normal file
View File

@ -0,0 +1,23 @@
//! By convention, root.zig is the root source file when making a library.
const std = @import("std");
pub fn bufferedPrint() !void {
// Stdout is for the actual output of your application, for example if you
// are implementing gzip, then only the compressed bytes should be sent to
// stdout, not any debugging messages.
var stdout_buffer: [1024]u8 = undefined;
var stdout_writer = std.fs.File.stdout().writer(&stdout_buffer);
const stdout = &stdout_writer.interface;
try stdout.print("Run `zig build test` to run the tests.\n", .{});
try stdout.flush(); // Don't forget to flush!
}
pub fn add(a: i32, b: i32) i32 {
return a + b;
}
test "basic add functionality" {
try std.testing.expect(add(3, 7) == 10);
}